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ABSTRACT

Acute inflammation is characterized by an accumulation of polymorphonuclear cells (PMNs), generation of
reactive oxygen species, subsequent apoptosis of PMNs, and finally phagocytosis of apoptotic cells by macro-
phages. Recently, it has been demonstrated that during apoptosis oxidation of membrane phospholipids, espe-
cially phosphatidylserine, occurs. Moreover, we have shown that membrane vesicles released from apoptotic
cells contain biologically active oxidized phospholipids. The involvement of oxidized phospholipids in the de-
velopment of atherosclerosis, which is described as a chronic inflammatory disease, is increasingly recognized.
These oxidized phospholipids were shown to induce several proinflammatory genes, such as monocyte chemoat-
tractant protein 1 or interleukin-8, and it is hypothesized that lipid oxidation products also play a role in other
chronic inflammatory disorders. On the other hand, oxidized phospholipids were shown to exert antiendo-
toxin effects by inhibiting lipopolysaccharide-induced signaling, representing a possible feedback loop during
gram-negative infection. Additionally, it has been described that oxidized phospholipids are capable of induc-
ing genes such as heme oxygenase-1 that are important for the resolution of acute inflammation. Moreover,
oxidized phospholipids serve as recognition signals on apoptotic cells facilitating phagocytosis. In this review,
we discuss the hypothesis that oxidized phospholipids generated in apoptotic cells (a) propagate chronic in-
flammation and (b) contribute to the resolution of acute inflammation. Antioxid. Redox Signal. 6, 311-320.

INTRODUCTION

NFLAMMATION is a protective response to challenging micro-
Iorganisms or tissue damage that finally leads to tissue repair
and restoration of tissue function. Under normal conditions, in-
flammatory processes are self-limiting, resulting in complete
resolution without loss of tissue function. Such inflammatory
reactions involve the sequential release of pro- and antiinflam-
matory mediators, increase of microvascular permeability, and
exudation of fluid and plasma proteins into the inflamed tissue.
In the early (acute) phase of inflammation, polymorphonuclea
leukocytes (PMNs) are predominant. PMNs are rapidly recruited
to the site of infection or injury and thus build the first line of
defense against invading microorganisms. After activation by
bacterial products or inflammatory cytokines, PMNs generate
reactive oxygen species and nitrogen species, release lytic en-

zymes, and ingest microbes. In addition, they secrete chemo-
kines that then attract more inflammatory cells. Finally, acti-
vated neutrophils undergo apoptosis, a process that plays a cen-
tral role in the resolution of acute inflammation. A crucial event
in successful resolution of acute inflammation is the release of
endogenousantiinflammatory mediators and the replacement of
apoptotic neutrophils by mononuclear cells. Monocytes then
differentiate into macrophages that recognize and phagocytose
apoptotic cells. Delayed apoptosis is associated with the prolon-
gation and persistence of inflammatory disorders, including in-
flammatory bowel disease (11), acute respiratory distress syn-
drome (91), rheumatoid arthritis (70), chronic granulomatous
disease (12), severe sepsis (46), and systemic inflammatory re-
sponse syndrome (41).

Little is known about the signals that shut down acute in-
flammation or shift the inflammatory response from an acute
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into a chronic state. The aim of this review is to summarize
the possible contribution of oxidized phospholipids, which are
generated during inflammation-induced apoptosis, to the pro-
cesses of resolution of acute and the propagation of chronic
inflammatory reactions.

FORMATION OF OXIDIZED
PHOSPHOLIPIDS DURING APOPTOSIS

Phospholipid oxidation products serve as
recognition signals on apoptotic cells

During inflammatory processes, reactive oxygen species are
released by activated neutrophils that not only kill invading mi-
croorganisms, but also modify host molecules such as lipids,
proteins, and DNA. Thus, to prevent uncontrolledinflammatory
responses and persistent inflammation, activated neutrophils
undergo apoptosis leading to formation of recognition signals
on the cell membrane, resulting in prompt phagocytosisof apop-
totic cells by macrophages. The loss of the plasma membrane
phospholipid asymmetry leading to externalization of phos-
phatidylserine (PS) to the outer leaflet of the membrane is an
important signal for macrophage recognition of aged and apop-
totic cells (1, 9, 43, 75). It has been shown that activation of the
NADPH oxidase during apoptosis leads to predominant oxida-
tion of the membrane PS, but also phosphatidylcholine(PC) and
phosphatidylethanolamine(PE). Using the pancaspase inhibitor,
z-VAD-fmk, it has been shown that apoptosis-asscciated oxi-
dation of PS could be prevented in dimethyl sulfoxide-differen-
tiated HL-60 cells, whereas PC and PE were oxidized to the
same extent in the absence or presence of z-VAD-fmk (5). In
apoptotic cells, both unoxidized PS and oxidized PS are exter-
nalized and serve as distinct signals for phagocytosis by mac-
rophages. Oxidation of PS has been shown after induction of
apoptosis in dimethyl sulfoxide-differentiated HL-60 cells,
human blood neutrophils (5, 57), Jurkat cells (44), and normal
human epidermal keratinocytes (80).

The importance of the externalized oxidized and unoxidized
PS for phagocytosis of apoptotic cells and successful resolu-
tion of inflammation has been evaluated by competition stud-
ies using PS-containing liposomes, which could inhibit the
uptake of apoptotic cells by macrophages in vitro (44). More-
over, by using such liposomes in a pulmonary inflammation
model in the mouse, clearance of apoptotic cells in the bron-
choalveolar fluid was inhibited, leading to massive accumula-
tion of apoptotic cells and secondary necrosis (58). Thus, it
could be suggested that whenever massive apoptosis and mem-
brane blebbing occur, these formed blebs compete with apop-
totic cells for phagocytosis and inhibit their clearance, result-
ing in a shift from apoptotic to necrotic cell death. In contrast
to apoptosis, during necrosis, membrane integrity is lost and
oxidants and histotoxic substances are massively released into
the extracellular space, leading to severe tissue damage and
delayed resolution of inflammation.

The presence of oxidized PC on the surface of apoptotic
cells has been demonstrated by using the monoclonal anti-
body EO6 that recognizes oxidized low-density lipoprotein
(LDL). This antibody exclusively binds to oxidized PC (13,
36). It has been shown that EO6 can effectively block the up-
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take of apoptotic cells by macrophages (13). Thus, in addition
to oxidized PS, the presence of oxidatively modified PC is an
important signal for phagocytosis.

Receptors involved in the recognition of oxidized
phospholipids on apoptotic cells

Various receptors have been implicated to participate in
the recognition of apoptotic cells by phagocytes (for review,
see 76). Some of these receptors were identified as recogniz-
ing oxidized epitopes on apoptotic cells. Among these, CD14
(21,59),CD36 (25), CD68 (75), the class B scavenger recep-
tors type I (27), the scavenger receptor class A (72), and the
lectin-like oxidized LDL receptor 1 (67) have been reported
to bind apoptotic cells; interestingly, all of them were origi-
nally identified as receptors for oxidatively modified LDL,
suggesting an oxidized lipid moiety on the apoptotic cell as
the ligand (69, 75, 83). Recently, by using nonapoptotic Jur-
kat cells whose plasma membranes had been enriched with
oxidized PS, it was shown that antibodies against CD36 and
against the phosphatidylserine receptor inhibited the uptake
of these cells by macrophages.Thus, it has been suggested that
CD36 and the PS receptor recognize oxidized PS (45).

Besides the above-mentionedreceptors, Chang et al. showed
that C-reactive protein (CRP) binds to oxidized LDL, oxidized
PC, and also apoptotic cells (14). The CRP-oxidized phos-
pholipid complexes can then be taken up by macrophages via
the “CRP receptor” (CD32 or F y-II receptor) or other scav-
enger receptors such as CD36 (34).

Membrane vesicles and apoptotic blebs contain
biologically active oxidized phospholipids

Besides the loss of the plasma membrane phospholipid asym-
metry, apoptotic cells undergo a typical morphological transfor-
mation by the release of membrane blebs (apoptotic blebs) (15,
60). In addition to apoptosis, membrane vesiculation occurs in
various cell types upon stimulation with Ca* ionophore, lipo-
polysaccharide (LPS), tumor necrosis factor-a (TNF-o), throm-
bin, complement proteins C5b-9, or hydroperoxides (16, 26, 33,
62,71, 98; for review, see 86).

Recently, Huber et al. from our laboratory showed that
apoptotic endothelial blebs stimulated endothelial cells to bind
monocytes, but not neutrophils, whereas membrane vesicles
from activated endothelial cells failed to induce monocyte
binding (37). However, in vitro oxidation of membrane vesi-
cles from activated endothelial cells rendered them biologi-
cally active by generation of 1-palmitoyl-2-(5-oxovaleroyl)-sn-
glycero-3-phosphorylcholine (POVPC) (37). Moreover, we
showed that the ability of apoptotic blebs or oxidized vesicles
to induce monocyte adhesion was abolished by preincubation
with antibodies against oxidized PC (EO6). On the other hand,
an antibody that recognizes malondialdehyde-lysine epitopes
(EO14) failed to inhibit the activity of apoptotic blebs, confirm-
ing oxidized phospholipids as the biologically active com-
pounds in apoptotic blebs and oxidized membrane vesicles (37).

Various diseases have been shown to be accompanied by
elevated levels of circulating microvesicles and apoptotic blebs
from various cell types. Most of these diseases were also ac-
companied by elevated thrombotic risk, such as atherosclero-
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sis (54), myocardial infarction (10), transient ischemic attacks,
lacunar infarction and multiinfarct dementia (28, 49), acute
coronary syndrome (55), disorders characterized by the pres-
ence of lupus anticoagulant (16), uremia (4), diabetes (22, 68),
thrombotic thrombocytopenic purpura (40), heparin-induced
thrombocytopenia (88), meningococcal sepsis (66), but also
in multiple sclerosis (61) and after clinical interventions such
as cardiac surgery (1), plasmapheresis (96), and after cardio-
pulmonary bypass (65). Moreover, it has been described that
various tumor cell lines and tumors continually shed mem-
brane vesicles in vitro and in vivo (24, 31). In spite of the vast
amount of data documenting the presence of membrane blebs
in vivo, their role in activating cells and inducing transcription
of pro- and antiinflammatory genes has been less appreciated.

PROPAGATION OF CHRONIC
INFLAMMATION BY OXIDIZED
PHOSPHOLIPIDS

Oxidized phospholipids induce
monocyte—endothelial interactions

Accumulation of monocytic cells is a hallmark of chronic
inflammation. Lipid oxidation products are believed to play
crucial roles in propagating the chronic inflammatory pro-
cesses underlying the development of atherosclerotic lesions
(52). Entrapment and oxidation of LDLs in the subendothe-
lial space are key events in the development of atherosclero-
sis (6, 64). Minimally modified/oxidized LDL (MM-LDL) is
capable of inducing an inflammatory response in endothelial
cells by production of chemokines such as monocyte chemo-
attractant protein-1 (MCP-1) (17) and Gro-1 (77), which pro-
mote recruitment of monocytes to the subintimal space, where
they differentiate into macrophages. Oxidized 1-palmitoyl-2-
arachidonoyl-sn-glycero-3-phosphocholine(OxPAPC) and three
of its components, POVPC, 1-palmitoyl-2-glutaroylsn-glycero-
3-phosphocholine (PGPC), and 1-palmitoyl-2-(5,6-epoxyiso-
prostane E,)-sn-glycero-3-phosphocholine(PEIPC), were shown
to be active components of MM-LDL (90). It was shown that
MM-LDL and POVPC induce specific monocyte adhesion by
a mechanism involving endothelial surface expression of an
alternatively spliced form of fibronectin, connecting segment-1,
a counterligand for VLA-4 on monocytes (79).

Induction of signaling mechanisms and gene
expression by oxidized phospholipids

Oxidized phospholipids induce a specific set of proinflam-
matory genes in vitro and in vivo. Besides MCP-1, Gro-1, and
interleukin (IL)-8 (17,74, 77, 82), recently also other chemo-
kines such as macrophage inflammatory protein-lo. (MIP-1a),
MIP-13, RANTES, MIP-2, and interferon-inducible protein-
10 have been shown to be up-regulated by oxidized phospho-
lipids (81 and unpublished observation). Moreover, we could
show that oxidized phospholipids increase synthesis of the
transcription factor early growth response 1 (EGR-1) in endo-
thelial cells and so induce expression of tissue factor (8). Var-
ious signaling mechanisms are activated by oxidized phospho-
lipids in endothelial cells. These include elevation of cyclic
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AMP and cytosolic CaZt levels and activation of mitogen-
activated protein (MAP) kinase cascades by protein kinases A
and C, but also induction of MAP kinase phosphatase 1. Acti-
vation of transcriptionis mediated by Egr-1 and NFAT (nuclear
factor of activated T cells), cyclic AMP responsive element
binding protein, and peroxisome proliferator-activated recep-
tors (and PPARs). However, we clearly demonstrated that oxi-
dized phospholipids do not engage the classical inflammatory
nuclear factor-k B pathway (8).

POSSIBLE ROLE OF OXIDIZED
PHOSPHOLIPIDS IN THE RESOLUTION
OF ACUTE INFLAMMATION

Heme oxygenase-1 (HO-1) and cyclooxygenase-2
(COX-2) play important roles in the resolution
of inflammation

A self-limiting acute infection is characterized by rapid
edema formation, massive recruitment of PMNs and their sub-
sequent apoptosis, followed by attraction of mononuclear cells
that phagocytose apoptotic cells and injurious stimuli. Finally,
normal tissue function and structure are restored [as reviewed
by Lawrence et al. (47)]. Whenever this procedure becomes
dysregulated,chronic inflammation can occur. Hence, the mech-
anisms involved in the endogenous antiinflammatory and in-
flammation-resolving process are currently extensively inves-
tigated, as they could offer possible targets in the treatment of
chronic inflammation.

Using the carrageenin pleurisy model, one of the most widely
characterized acute inflammatory models, Willoughby et al.
(95) showed that two enzymes, COX-2 and HO-1, are essential
for the resolving phase because the inhibition of these enzymes
delayed the resolution of inflammation. Although COX-2 was
initially described as a proinflammatory gene because of the
beneficial effects of pharmacological COX-2 inhibitors, anti-
inflammatory properties also have been ascribed to COX-2
(for review, see 29). It has been shown that COX-2 expression
was biphasic, the first peak occurring within the first 2 h and
the second, much higher peak occurring after 48 h. It was
shown that this late expression of COX-2 was essential for re-
solving the inflammation, because inhibition of this second
peak resulted in a delayed inflammatory reaction (30). HO-1,
the inducible rate-limiting enzyme mediating catabolism of
heme into biliverdin, free iron, and carbon monoxide (53),
was shown to be highly induced in the carrageenin pleurisy
model 24 h after induction of inflammation. Inhibition of
HO-1 resulted in increased cell extravasation (93). Elevation
of HO-1 resulted in suppression of the inflammatory process,
whereas inhibition of HO-1 led to a prolongation and potenti-
ation of inflammation (94).

Genes induced by oxidized phospholipids that are
involved in the resolution of inflammation

Taking into consideration that apoptosis is essential for a
complete resolution of acute inflammation and the fact that
oxidized phospholipids are generated during apoptosis, we
hypothesize that oxidized phospholipids contribute to the res-
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olution of inflammation at several levels of the resolution
process:

First, PMNs have to be replaced and phagocytosed by mac-
rophages, which in turn have to be attracted by specific chemo-
kines. Oxidized phospholipids are capable of inducing MCP-1,
IL-8, and Gro-1 and also induce specific binding of mono-
cytes, but not neutrophils to endothelial cells in vitro (17, 74,
77, 82). Although the contribution of oxidized phospholipids
to the selective accumulation of mononuclear cells in athero-
sclerotic plaques was suggested (52), until now they were not
implicated in the replacement of PMNs during cessation of
acute inflammation. Second, oxidized phospholipids were also
shown to induce the expression of enzymes, important for a
sufficient resolution of acute inflammation, such as HO-1 (38)
and COX-2 (73). The importance of these enzymes in resolu-
tion of acute inflammation has been described above. Third,
oxidized LDL was shown to induce the antiinflammatory IL-10
(87), which inhibits activation and function of macrophages
by suppressing phagocytosis, oxidative burst, and production
of nitric oxide and cytokines (32). Moreover, IL-10 counter-
acts cytokine-induced inhibition of neutrophil apoptosis during
severe sepsis (46). Oxidized phospholipids were also shown
to induce IL-6 (85). Although several lines of evidence sug-
gest that IL-6 has crucial roles in the early phase of inflam-
mation (3), the essential involvement of IL-6 in wound heal-
ing has been recently demonstrated (51). In addition, oxidized
phospholipids were demonstrated to induce glutathione syn-
thesis (63), which protects cells against oxidative stress (23).
Lately, it has been proposed that oxidized phospholipids can
also act as ligands and agonists of the PPAR vy (18, 73, 81, 84)
and PPARa (19, 48). The antiinflammatory properties of PPARs
are increasingly recognized (35) and have been reviewed else-
where (20). In particular, it has been described that PPAR«
activation leads to induction of IkBa expression (19), and
that PPARy activation suppresses LPS, TNF-a, or interferon-
v-induced inflammatory responses (39, 56, 92).

Oxidized phospholipids present in membrane
vesicles are biologically active in vivo

Although it is believed that lipid oxidation products can
exert their biological activities locally, e.g., in the vessel wall
where they accumulate, it was not clear whether they are ac-
tive also in the bloodstream. Several plasma enzymes, includ-
ing paraoxonase (2, 78), platelet activating factor-acetylhy-
drolase (89, 97), or secretory nonpancreatic phospholipase A,
(50), have been shown to destroy biologically active phospho-
lipids. However, we showed that intravenously administered
OxPAPC exerted dose-dependent gene induction of egr-1 in the
liver of mice. Moreover, JE (the mouse homologue of MCP-1)
and HO-1 were up-regulatedin various tissues, including liver,
heart, and white blood cells (42), upon intravenous adminis-
tration of OxPAPC.

We examined whether oxidized membrane vesicles, which
were shown to have similar properties as apoptotic blebs and
OxPAPC in vitro (37), would exert similar biological effects
also in vivo. Isolated membrane vesicles from activated endo-
thelial cells were oxidized and injected intravenously into mice.
Oxidized membrane vesicles induced HO-1 expression in the
liver after 4.5 h, whereas E-selectin, a marker of acute inflam-
mation, was not up-regulated (Fig. 1). Thus, we conclude that
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FIG. 1. Oxidized membrane vesicles induce HO-1 expres-

sion in the liver of mice. Microvesicles were derived from en-
dothelial cells exposed for 45 min to Ca?+ ionophore (10 umol/L)
in modified Hanks’ balanced salt solutioncontaining 2.5 mmol/L
CaCl, and 10 mmol/L HEPES (37). Oxidation was induced by
tert-butyl hydroperoxide (30 umol/L) and Fe?* (5 umol/L) for
75 min at 37°C. Thirty micrograms of native or oxidized vesi-
cles was injected intravenously into female C57/BL6 mice (n =
3). After 4.5 h, animals were killed and RNA was isolated from
the liver using Trizol reagent; 900 ng of total RNA was reverse-
transcribed. Quantitative RT-PCR for HO-1 and E-selectin was
performed using cDNA corresponding to 2.5 ng of total RNA.
Gene expression was normalized to 3-2-microglobulin. Results
are shown as means + SE (42).

lipid oxidation products present in membrane vesicles and
apoptotic cells are biologically active and can induce gene ex-
pression in vivo.

ANTIENDOTOXIN EFFECT OF
OXIDIZED PHOSPHOLIPIDS

In addition to the induction of antiinflammatory and pro-
tective genes, we recently found that OXPAPC inhibits LPS-
induced inflammatory reactions by interacting with accessory
plasma proteins CD14 and LPS-binding protein (LBP), which
present LPS to its receptor, toll-like receptor 4 (TLR4). The
effect was specific for LPS; OxPAPC did not significantly in-
fluence actions of other proinflammatory agents, such as IL-1§3
or TNF-a.. We could also show in several in vivo models that
OxPAPC inhibited typical signs of inflammation, such as leuko-
cyte accumulation, edema formation, and expression of adhe-
sion molecules such as E-selectin, in mice challenged with
LPS. Furthermore, survival of animals receiving a lethal dose
of LPS was significantly increased by OXxPAPC (7). This mech-
anism of scavenging accessory proteins by OxPAPC, thereby
inhibiting LPS signaling, may represent a negative feedback
during gram-negative inflammation to blunt innate immune
responses. As it was shown that during apoptosis membrane
phospholipids, particularly PS, are oxidized, we were interested
whether oxidized PS, in addition to oxidized PC, also had the
ability to block LPS-induced inflammatory reactions. As illus-
trated in Fig. 2, LPS-induced E-selectin expression on endo-
thelial cells was inhibited by oxidized 1-palmitoyl-2-arachi-
donoyl-sn-glycero-3-phosphaidylserine (OxPAPS), suggesting
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FIG. 2. OxPAPS inhibits LPS-induced E-selectin expres-
sion. Monolayers of human umbilical vein endothelial cells were
stimulated with 300 ng/ml LPS alone or in combination with 5
ug of PAPS or OxPAPS in Medium 199 containing 10% fetal
calf serum for 4 h. The ELISA was performed as described pre-
viously (7) using E-selectin antibody (R&D Systems), secondary
peroxidases-conjugated antibody, and o-phenylenediamine as
substrate. Results are shown as means + SD.

control

that oxidized PS that is formed during apoptosis exerts anti-
endotoxin effects.

Based on these findings, we hypothesize that oxidized phos-
pholipids that emerge during apoptosis positively regulate the
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resolution of acute bacterial inflammation, on the one hand
by inducing protective, antiinflammatory genes, and on the
other hand by representing a negative feedback by inhibiting
LPS action and thus blunting innate immune response.

CONCLUSION

At sites of inflammation, apoptosis with subsequent expo-
sure of oxidized phospholipids (especially PS) occurs, oxidized
membrane vesicles and apoptotic blebs are released from var-
ious cell types, and reactive oxygen species are released into
the extracellular space that render other plasma membranes
as well as membrane vesicles biologically active. We hypothesize
that these newly formed, accumulating oxidized phospho-
lipids contribute to the process of resolution of inflammation
by (1) inducing selective monocyte recruitment via induction
of the chemokines MCP-1, IL-8, and Gro-1, (2) representing
recognition signals of apoptotic cells for macrophages for
phagocytosis, (3) inducing enzymes that are essential for res-
olution such as COX-2 and HO-1 and suppressing oxidative
burst via IL-10, and (4) repressing LPS-induced inflamma-
tion (Fig. 3).

On the other hand, under circumstances of ongoing increased
oxidative stress, e.g., when apoptosis of neutrophilsis delayed,
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FIG 3. Activated neutrophils at the site of inflammation undergo rapid apoptosis, leading to loss of plasma asymmetry,
and thus to oxidation and externalization of phosphatidylserine (...-), and membrane shedding. (1) Oxidized membranes
stimulate endothelial cells to produce MCP-1, Gro-1, and IL-8; thus, monocytes are specifically attracted. (2) Exposure of the ox-
idized phosphatidylserine on the outer leaflet of the membrane is rapidly recognized by macrophages, leading to phagocytosis. (3)
Oxidized membranes can contribute to cell protection and resolution of inflammation by induction of HO-1, COX-2, and IL-10
(see text). (4) Oxidized membranes can interact with CD14 and LBP and thereby inhibit LPS-induced inflammatory response by

inhibiting signaling through Toll-like receptor 4.
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the presence of these lipid mediators would be prolonged, lead-
ing to ongoing accumulation of mononuclear cells at the site
of inflammation and a pathology typical for chronic inflam-
mation. Besides atherosclerosis, the classical “lipid-induced”
inflammation, there are many other chronic inflammatory dis-
eases accompanied by massive oxidative stress and apoptosis
such as rheumatoid arthritis, asthma, preeclampsia, or cancer-
related inflammation, in which oxidized phospholipids may
play an important role in modulating the disease progress.

However, more work has to be done to understand how oxi-
dized phospholipids can promote the resolution of inflamma-
tion and under which circumstances they act as proinflamma-
tory agents leading to prolonged, chronic inflammation.

ABBREVATIONS

COX-2, cyclooxygenase-2;CRP, C-reactive protein; EGR-1,
early growth response 1; HO-1, heme oxygenase-1; IL, inter-
leukin; LBP, lipopolysaccharde-binding protein; LDL, low-
density lipoprotein; LPS, lipopolysaccharide; MAP, mitogen-
activated protein; MCP-1, monocyte chemoattractant protein-1;
MIP-1, macrophage inflammatory protein-1; MM-LDL, mini-
mally modified low-density lipoprotein; OxPAPC, oxidized 1-
palmitoyl-2-arachidonoylsn-glycero-3-phosphocholine; OxPAPS,
oxidized 1-palmitoyl-2-arachidonoylsn-glycero-3-phosphatidyl-
serine; PC, phosphatidylcholine; PE, phosphatidylethanol-
amine; PMNs, polymorphonudear leukocytes; POVPC, 1-
palmitoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphorylcholine;
PPAR, peroxisome proliferator-activated receptor; PS, phos-
phatidylserine; TLR4, toll-like receptor 4; TNF-a, tumor necro-
sis factor-o.
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